Source code for torch_optimizer.yogi

import math

import torch
import torch.nn as nn
from torch.optim.optimizer import Optimizer

from .types import Betas2, OptFloat, OptLossClosure, Params

__all__ = ('Yogi',)


[docs]class Yogi(Optimizer): r"""Implements Yogi Optimizer Algorithm. It has been proposed in `Adaptive methods for Nonconvex Optimization`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-2) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) initial_accumulator: initial values for first and second moments (default: 1e-6) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.Yogi(model.parameters(), lr=0.01) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization # noqa Note: Reference code: https://github.com/4rtemi5/Yogi-Optimizer_Keras """ def __init__( self, params: Params, lr: float = 1e-2, betas: Betas2 = (0.9, 0.999), eps: float = 1e-3, initial_accumulator: float = 1e-6, weight_decay: float = 0, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if eps < 0.0: raise ValueError('Invalid epsilon value: {}'.format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( 'Invalid beta parameter at index 0: {}'.format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( 'Invalid beta parameter at index 1: {}'.format(betas[1]) ) if weight_decay < 0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) defaults = dict( lr=lr, betas=betas, eps=eps, initial_accumulator=initial_accumulator, weight_decay=weight_decay, ) super(Yogi, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Yogi does not support sparse gradients, ' 'please consider SparseAdam instead' ) state = self.state[p] # State initialization # Followed from official implementation in tensorflow addons: # https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/yogi.py#L118 # noqa # For more details refer to the discussion: # https://github.com/jettify/pytorch-optimizer/issues/77 if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = nn.init.constant_( torch.empty_like( p.data, memory_format=torch.preserve_format ), group['initial_accumulator'], ) # Exponential moving average of squared gradient values state['exp_avg_sq'] = nn.init.constant_( torch.empty_like( p.data, memory_format=torch.preserve_format ), group['initial_accumulator'], ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['weight_decay'] != 0: grad = grad.add(p.data, alpha=group['weight_decay']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) grad_squared = grad.mul(grad) exp_avg_sq.addcmul_( torch.sign(exp_avg_sq - grad_squared), grad_squared, value=-(1 - beta2), ) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( group['eps'] ) step_size = group['lr'] / bias_correction1 p.data.addcdiv_(exp_avg, denom, value=-step_size) return loss