Source code for torch_optimizer.sgdw
import torch
from torch.optim.optimizer import Optimizer
from .types import OptFloat, OptLossClosure, Params, State
__all__ = ('SGDW',)
[docs]class SGDW(Optimizer):
r"""Implements SGDW algorithm.
It has been proposed in `Decoupled Weight Decay Regularization`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
momentum: momentum factor (default: 0)
weight_decay: weight decay (L2 penalty) (default: 0)
dampening: dampening for momentum (default: 0)
nesterov: enables Nesterov momentum (default: False)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.SGDW(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1711.05101
Note:
Reference code: https://github.com/pytorch/pytorch/pull/22466
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
momentum: float = 0.0,
dampening: float = 0.0,
weight_decay: float = 0.0,
nesterov: bool = False,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if momentum < 0.0:
raise ValueError('Invalid momentum value: {}'.format(momentum))
if dampening < 0.0:
raise ValueError('Invalid dampening value: {}'.format(dampening))
if weight_decay < 0.0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
'Nesterov momentum requires a momentum and zero dampening'
)
super(SGDW, self).__init__(params, defaults)
def __setstate__(self, state: State) -> None:
super(SGDW, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat:
"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if p.grad.is_sparse:
msg = (
'SGDW does not support sparse gradients, '
'please consider SparseAdam instead'
)
raise RuntimeError(msg)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(
d_p
).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# Apply momentum
p.data.add_(d_p, alpha=-group['lr'])
# Apply weight decay
if weight_decay != 0:
p.data.add_(weight_decay, alpha=-group['lr'])
return loss