Source code for torch_optimizer.sgdw

import torch
from torch.optim.optimizer import Optimizer

from .types import OptFloat, OptLossClosure, Params, State

__all__ = ('SGDW',)


[docs]class SGDW(Optimizer): r"""Implements SGDW algorithm. It has been proposed in `Decoupled Weight Decay Regularization`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) momentum: momentum factor (default: 0) weight_decay: weight decay (L2 penalty) (default: 0) dampening: dampening for momentum (default: 0) nesterov: enables Nesterov momentum (default: False) Example: >>> import torch_optimizer as optim >>> optimizer = optim.SGDW(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1711.05101 Note: Reference code: https://github.com/pytorch/pytorch/pull/22466 """ def __init__( self, params: Params, lr: float = 1e-3, momentum: float = 0.0, dampening: float = 0.0, weight_decay: float = 0.0, nesterov: bool = False, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if momentum < 0.0: raise ValueError('Invalid momentum value: {}'.format(momentum)) if dampening < 0.0: raise ValueError('Invalid dampening value: {}'.format(dampening)) if weight_decay < 0.0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( 'Nesterov momentum requires a momentum and zero dampening' ) super(SGDW, self).__init__(params, defaults) def __setstate__(self, state: State) -> None: super(SGDW, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat: """Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad.data if p.grad.is_sparse: msg = ( 'SGDW does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone( d_p ).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf # Apply momentum p.data.add_(d_p, alpha=-group['lr']) # Apply weight decay if weight_decay != 0: p.data.add_(weight_decay, alpha=-group['lr']) return loss