Source code for torch_optimizer.radam
import math
import torch
from torch.optim.optimizer import Optimizer
from .types import Betas2, OptFloat, OptLossClosure, Params
__all__ = ('RAdam',)
[docs]class RAdam(Optimizer):
r"""Implements RAdam optimization algorithm.
It has been proposed in `On the Variance of the Adaptive Learning
Rate and Beyond`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps: term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.RAdam(model.parameters(), lr=0.1)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1908.03265
Note:
Reference code: https://github.com/LiyuanLucasLiu/RAdam
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if weight_decay < 0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
if (
isinstance(params, (list, tuple))
and len(params) > 0
and isinstance(params[0], dict)
):
for param in params:
if 'betas' in param and (
param['betas'][0] != betas[0]
or param['betas'][1] != betas[1]
):
param['buffer'] = [[None, None, None] for _ in range(10)]
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
buffer=[[None, None, None] for _ in range(10)],
)
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat:
r"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
lr = group['lr']
weight_decay = group['weight_decay']
beta1, beta2 = group['betas']
eps = group['eps']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
msg = (
'RAdam does not support sparse gradients, '
'please consider SparseAdam instead'
)
raise RuntimeError(msg)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
state['step'] += 1
buffered = group['buffer'][int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (
1 - beta2_t
)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = (
lr
* math.sqrt(
(1 - beta2_t)
* (N_sma - 4)
/ (N_sma_max - 4)
* (N_sma - 2)
/ N_sma
* N_sma_max
/ (N_sma_max - 2)
)
/ (1 - beta1 ** state['step'])
)
else:
step_size = lr / (1 - beta1 ** state['step'])
buffered[2] = step_size
if weight_decay != 0:
p_data_fp32.add_(p_data_fp32, alpha=-weight_decay * lr)
# more conservative since it's an approximated value
if N_sma >= 5:
denom = exp_avg_sq.sqrt().add_(eps)
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size)
else:
p_data_fp32.add_(exp_avg, alpha=-step_size)
p.data.copy_(p_data_fp32)
return loss