Source code for torch_optimizer.pid
import torch
from torch.optim.optimizer import Optimizer
from .types import OptFloat, OptLossClosure, Params
[docs]class PID(Optimizer):
r"""Implements PID optimization algorithm.
It has been proposed in `A PID Controller Approach for Stochastic
Optimization of Deep Networks`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
momentum: momentum factor (default: 0.0)
weight_decay: weight decay (L2 penalty) (default: 0.0)
dampening: dampening for momentum (default: 0.0)
derivative: D part of the PID (default: 10.0)
integral: I part of the PID (default: 5.0)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.PID(model.parameters(), lr=0.001, momentum=0.1)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www4.comp.polyu.edu.hk/~cslzhang/paper/CVPR18_PID.pdf
Note:
Reference code: https://github.com/tensorboy/PIDOptimizer
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
momentum: float = 0.0,
dampening: float = 0,
weight_decay: float = 0.0,
integral: float = 5.0,
derivative: float = 10.0,
) -> None:
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
integral=integral,
derivative=derivative,
)
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if momentum < 0.0:
raise ValueError('Invalid momentum value: {}'.format(momentum))
if weight_decay < 0.0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
if integral < 0.0:
raise ValueError('Invalid PID integral value: {}'.format(integral))
if derivative < 0.0:
raise ValueError(
'Invalid PID derivative value: {}'.format(derivative)
)
super(PID, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat:
r"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
integral = group['integral']
derivative = group['derivative']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(p.data, alpha=weight_decay)
if momentum != 0:
param_state = self.state[p]
if 'i_buffer' not in param_state:
i_buf = param_state['i_buffer'] = torch.zeros_like(p)
i_buf.mul_(momentum).add_(d_p)
else:
i_buf = param_state['i_buffer']
i_buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if 'grad_buffer' not in param_state:
g_buf = param_state['grad_buffer'] = torch.zeros_like(
p
)
g_buf = d_p
d_buf = param_state['d_buffer'] = torch.zeros_like(p)
d_buf.mul_(momentum).add_(d_p - g_buf)
else:
d_buf = param_state['d_buffer']
g_buf = param_state['grad_buffer']
d_buf.mul_(momentum).add_(
d_p - g_buf, alpha=1 - momentum
)
self.state[p]['grad_buffer'] = d_p.clone()
d_p = d_p.add_(i_buf, alpha=integral).add_(
d_buf, alpha=derivative
)
p.data.add_(d_p, alpha=-group['lr'])
return loss