Source code for torch_optimizer.lamb
import math
import torch
from torch.optim.optimizer import Optimizer
from .types import Betas2, OptFloat, OptLossClosure, Params
__all__ = ('Lamb',)
[docs]class Lamb(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning:
Training BERT in 76 minutes`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps: term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
clamp_value: clamp weight_norm in (0,clamp_value) (default: 10)
set to a high value to avoid it (e.g 10e3)
adam: always use trust ratio = 1, which turns this
into Adam. Useful for comparison purposes. (default: False)
debias: debias adam by (1 - beta**step) (default: False)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.Lamb(model.parameters(), lr=0.1)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1904.00962
Note:
Reference code: https://github.com/cybertronai/pytorch-lamb
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0,
clamp_value: float = 10,
adam: bool = False,
debias: bool = False,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if weight_decay < 0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
if clamp_value < 0.0:
raise ValueError('Invalid clamp value: {}'.format(clamp_value))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.clamp_value = clamp_value
self.adam = adam
self.debias = debias
super(Lamb, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat:
r"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
msg = (
'Lamb does not support sparse gradients, '
'please consider SparseAdam instead'
)
raise RuntimeError(msg)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# Paper v3 does not use debiasing.
if self.debias:
bias_correction = math.sqrt(1 - beta2 ** state['step'])
bias_correction /= 1 - beta1 ** state['step']
else:
bias_correction = 1
# Apply bias to lr to avoid broadcast.
step_size = group['lr'] * bias_correction
weight_norm = torch.norm(p.data).clamp(0, self.clamp_value)
adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
if group['weight_decay'] != 0:
adam_step.add_(p.data, alpha=group['weight_decay'])
adam_norm = torch.norm(adam_step)
if weight_norm == 0 or adam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / adam_norm
state['weight_norm'] = weight_norm
state['adam_norm'] = adam_norm
state['trust_ratio'] = trust_ratio
if self.adam:
trust_ratio = 1
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
return loss