Source code for torch_optimizer.lamb

import math

import torch
from torch.optim.optimizer import Optimizer

from .types import Betas2, OptFloat, OptLossClosure, Params

__all__ = ('Lamb',)


[docs]class Lamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) clamp_value: clamp weight_norm in (0,clamp_value) (default: 10) set to a high value to avoid it (e.g 10e3) adam: always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. (default: False) debias: debias adam by (1 - beta**step) (default: False) Example: >>> import torch_optimizer as optim >>> optimizer = optim.Lamb(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1904.00962 Note: Reference code: https://github.com/cybertronai/pytorch-lamb """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-6, weight_decay: float = 0, clamp_value: float = 10, adam: bool = False, debias: bool = False, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if eps < 0.0: raise ValueError('Invalid epsilon value: {}'.format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( 'Invalid beta parameter at index 0: {}'.format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( 'Invalid beta parameter at index 1: {}'.format(betas[1]) ) if weight_decay < 0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) if clamp_value < 0.0: raise ValueError('Invalid clamp value: {}'.format(clamp_value)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.clamp_value = clamp_value self.adam = adam self.debias = debias super(Lamb, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'Lamb does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # v_t exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Paper v3 does not use debiasing. if self.debias: bias_correction = math.sqrt(1 - beta2 ** state['step']) bias_correction /= 1 - beta1 ** state['step'] else: bias_correction = 1 # Apply bias to lr to avoid broadcast. step_size = group['lr'] * bias_correction weight_norm = torch.norm(p.data).clamp(0, self.clamp_value) adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) if group['weight_decay'] != 0: adam_step.add_(p.data, alpha=group['weight_decay']) adam_norm = torch.norm(adam_step) if weight_norm == 0 or adam_norm == 0: trust_ratio = 1 else: trust_ratio = weight_norm / adam_norm state['weight_norm'] = weight_norm state['adam_norm'] = adam_norm state['trust_ratio'] = trust_ratio if self.adam: trust_ratio = 1 p.data.add_(adam_step, alpha=-step_size * trust_ratio) return loss