Source code for torch_optimizer.diffgrad

import math

import torch
from torch.optim.optimizer import Optimizer

from .types import Betas2, OptFloat, OptLossClosure, Params

__all__ = ('DiffGrad',)


[docs]class DiffGrad(Optimizer): r"""Implements DiffGrad algorithm. It has been proposed in `DiffGrad: An Optimization Method for Convolutional Neural Networks`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.DiffGrad(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1909.11015 Note: Reference code: https://github.com/shivram1987/diffGrad """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0.0, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if eps < 0.0: raise ValueError('Invalid epsilon value: {}'.format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( 'Invalid beta parameter at index 0: {}'.format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( 'Invalid beta parameter at index 1: {}'.format(betas[1]) ) if weight_decay < 0.0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(DiffGrad, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'DiffGrad does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) # Previous gradient state['previous_grad'] = torch.zeros_like(p) exp_avg, exp_avg_sq, previous_grad = ( state['exp_avg'], state['exp_avg_sq'], state['previous_grad'], ) state['step'] += 1 if group['weight_decay'] != 0: grad.add_(p.data, alpha=group['weight_decay']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # compute diffgrad coefficient (dfc) diff = torch.abs(previous_grad - grad) dfc = torch.div(1.0, (1.0 + torch.exp(-diff))) state['previous_grad'] = grad.clone() # update momentum with dfc exp_avg1 = exp_avg * dfc step_size = ( group['lr'] * math.sqrt(bias_correction2) / bias_correction1 ) p.data.addcdiv_(exp_avg1, denom, value=-step_size) return loss