Source code for torch_optimizer.adamod
import math
import torch
from torch.optim.optimizer import Optimizer
from .types import Betas2, OptFloat, OptLossClosure, Params
__all__ = ('AdaMod',)
[docs]class AdaMod(Optimizer):
r"""Implements AdaMod algorithm.
It has been proposed in `Adaptive and Momental Bounds for Adaptive
Learning Rate Methods`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing running averages of gradient
and its square (default: (0.9, 0.999))
beta3: smoothing coefficient for adaptive learning rates
(default: 0.9999)
eps: term added to the denominator to improve numerical stability
(default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.AdaMod(model.parameters(), lr=0.1)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1910.12249
Note:
Reference code: https://github.com/lancopku/AdaMod
"""
def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
beta3: float = 0.999,
eps: float = 1e-8,
weight_decay: float = 0,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if not 0.0 <= beta3 < 1.0:
raise ValueError('Invalid beta3 parameter: {}'.format(beta3))
if weight_decay < 0.0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
defaults = dict(
lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay
)
super(AdaMod, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat:
"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
msg = 'AdaMod does not support sparse gradients'
raise RuntimeError(msg)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
# Exponential moving average of actual learning rates
state['exp_avg_lr'] = torch.zeros_like(p)
exp_avg, exp_avg_sq, exp_avg_lr = (
state['exp_avg'],
state['exp_avg_sq'],
state['exp_avg_lr'],
)
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.sqrt().add_(group['eps'])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = (
group['lr']
* math.sqrt(bias_correction2)
/ bias_correction1
)
if group['weight_decay'] != 0:
p.data.add_(
p.data, alpha=-group['weight_decay'] * group['lr']
)
# Applies momental bounds on actual learning rates
step_size = torch.full_like(denom, step_size)
step_size.div_(denom)
exp_avg_lr.mul_(group['beta3']).add_(
step_size, alpha=1 - group['beta3']
)
step_size = torch.min(step_size, exp_avg_lr)
step_size.mul_(exp_avg)
p.data.add_(-step_size)
return loss