Source code for torch_optimizer.adamod

import math

import torch
from torch.optim.optimizer import Optimizer

from .types import Betas2, OptFloat, OptLossClosure, Params

__all__ = ('AdaMod',)


[docs]class AdaMod(Optimizer): r"""Implements AdaMod algorithm. It has been proposed in `Adaptive and Momental Bounds for Adaptive Learning Rate Methods`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) beta3: smoothing coefficient for adaptive learning rates (default: 0.9999) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.AdaMod(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1910.12249 Note: Reference code: https://github.com/lancopku/AdaMod """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), beta3: float = 0.999, eps: float = 1e-8, weight_decay: float = 0, ) -> None: if lr <= 0.0: raise ValueError('Invalid learning rate: {}'.format(lr)) if eps < 0.0: raise ValueError('Invalid epsilon value: {}'.format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( 'Invalid beta parameter at index 0: {}'.format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( 'Invalid beta parameter at index 1: {}'.format(betas[1]) ) if not 0.0 <= beta3 < 1.0: raise ValueError('Invalid beta3 parameter: {}'.format(beta3)) if weight_decay < 0.0: raise ValueError( 'Invalid weight_decay value: {}'.format(weight_decay) ) defaults = dict( lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay ) super(AdaMod, self).__init__(params, defaults)
[docs] def step(self, closure: OptLossClosure = None) -> OptFloat: """Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = 'AdaMod does not support sparse gradients' raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) # Exponential moving average of actual learning rates state['exp_avg_lr'] = torch.zeros_like(p) exp_avg, exp_avg_sq, exp_avg_lr = ( state['exp_avg'], state['exp_avg_sq'], state['exp_avg_lr'], ) beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = ( group['lr'] * math.sqrt(bias_correction2) / bias_correction1 ) if group['weight_decay'] != 0: p.data.add_( p.data, alpha=-group['weight_decay'] * group['lr'] ) # Applies momental bounds on actual learning rates step_size = torch.full_like(denom, step_size) step_size.div_(denom) exp_avg_lr.mul_(group['beta3']).add_( step_size, alpha=1 - group['beta3'] ) step_size = torch.min(step_size, exp_avg_lr) step_size.mul_(exp_avg) p.data.add_(-step_size) return loss